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Theorem 1: The aggregation parameter k will become 2k if two neighbouring quadrats with 

size of a is emerged to form a new larger quadrat with size of 2a under the independent 

negative binomial model.  

Proof: 

At the spatial scale a (that is, the area size of each sampling area is a), let abundances of a 

species respectively in grid cell 1 and grid cell 2 be denoted by X and Y, moreover they follow the 

same distribution NBD(k,u) , under the independence assumption, the joint probability is 

simply the product of the two probability functions as 

P(X = x,Y = y) = Γ(k + x)
Γ(k)Γ(x +1)
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At the spatial scale 2a, when any two neighbouring grid cells are merged together (here for 

example, grid cells 1 and 2 are merged), we have the probability of species abundance in the new 

larger cell as 

P(X +Y = z) = P(X = z − y,Y = y)
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Therefore, it is evident that X+Y follows NBD(2k,2u)  when the spatial scale a is augmented to 

2a, species distributional aggregation value is expected to increase from k to 2k (Johnson and Kotz 

1969).  

 Of course, it may be easier to derive the scale dependency pattern of the aggregation value 

using probability-generating function. To show this, it is well known that the 

probability-generating function for the negative binomial model NBD(k,u)  is 
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 At the spatial scale a, because the random variates X and Y in the two neighboring grids 

follow the same NBD(k,u) , their probability-generating functions thus are identical as 

GX (z) =GY (z) =G(z) . When the spatial scale is augmented to 2a by merging the two 

neighboring grids, the new random variate becomes X+Y. By using the product property of 

probability-generating function, we have  
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From the last equality of the above derivation, it is clear that GX+Y (z)  is the 

probability-generating function of NBD(2k,2u) . Thus, we have the desired result 

X +Y ~ NBD(2k,2u) . 

 

Theorem 2: The marginal probability of species abundance in a small area a over the region 

A for the negative trinomial model (Eq. 4 in the main text) is identical to the negative 

binomial model (Eq. 1 in the main text). 

Proof: 

From equation 4 in the main text, 

P(Na = n,NA−a = N − n) =
Γ(k + N )

Γ(k)Γ(n+1)Γ(N − n+1)
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By taking n+m=N, we thus have the marginal probability for species abundance in a small area a 

by 

P(Na = n) = P(Na = n,NA−a =m)
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Because u*= E(N )  and u = aE(N ) A= au* A , 

 
P(Na = n) =

Γ(k + n)
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which is the same as Eq. 1 of the main text. 
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Additional Methods 

Species abundance models and evenness indices 

The probability of observing a species with abundance i for the Fisher’s logseries model 

(Fisher et al. 1943) was calculated as follows: 

p(i |θ ) = − 1
ln(1−θ )

θ i

i
,        

where θ  is a uniform random number over [0.95, 1). Selection of this specific parameter range 

allows the generated dominance-rank curve to vary from even to uneven patterns. This applies to 

other models as below. 

The geometric series model (Motomura 1932, Chen 2014) was used to simulate species 

abundance as follows: 

p(i |θ ) =θ (1−θ )i−1 , 

where θ  is a uniform random number over (0, 0.1]. 

For the Preston’s canonical lognormal distribution (Preston 1962, Kitzes and Harte 2015, 

Chen and Shen 2017a), species abundance was generated by 

p(i |θ ) =C eθ
2

i ln 2
e
−
(ln i−2θ 2 )2

4θ 2 , 

where C  is a normalization constant to allow p(n |θ )
n=1

S

∑ =1 and θ  is a uniform random 

number sampled from [0.5, 3]. 

We also generated species abundance based on a local zero-sum multinomial model without 

immigration (Hubbell 2001, Alonso and McKane 2004), which was given by, 

p(i |θ ) =C θ
i
(1− i / N )θ−1 . 



6	
	

Again, C  here is a normalization constant to allow p(n |θ )
n=1

S

∑ =1  and θ  is a uniform 

random number sampled over [1,300]. 

To measure the evenness of the abundance, we computed the coefficient of variation (CV) 

for each simulated species abundance distribution as in (Chao and Shen 2003): 

CV =

pi −1 S( )
2
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, 

where pi  is the proportion of individuals over N, belonging to the i-th species over S. 

In addition, we computed the Shannon’s and Simpson’s evenness indices (Chen 2015), which 

were calculated as: 
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Variance estimation of the parameters 

Following a similar application about estimating species richness in Shen and He (2008), we 

derive the estimated standard errors of k̂  and û  from the observed information matrix with 

respect to the likelihood function Eq. (8b). Specifically, the observed information matrix is 

denoted by 
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Σ = −

∂2 lnL(k,u | f1,..., fM )
∂k2

∂2 lnL(k,u | f1,..., fM )
∂k∂u
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⎥
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(k,u)=( k̂,û)

. (S1) 

Consequently, the variances of k̂  and û  can be respectively estimated by the (1, 1) entry and 

(2, 2) entry of Σ−1  (the inverse matrix of Σ ), and then the estimated standard errors of k̂  and 

û  are square roots of the two estimated variances.  

 

Confidence intervals of the parameters 

Since (k̂, û)T  is asymptotically distributed from a bivariate normal distribution with mean 

vector (k,u)T  and variance-covariance matrix Σ−1 . Consequently, using the estimated 

variances of k̂  and û , (1−α)×100%  confidence intervals of k and u can be simply 

established by  

k̂ − zα /2 Vâr(k̂), k̂ + zα /2 Vâr(k̂)( )       (S2a) 

and  

û− zα /2 Vâr(û), û+ zα /2 Vâr(û)( ) ,      (S2b) 

respectively. Note that zα /2  in the confidence intervals is found by P(Z ≥ zα /2 ) =α / 2  when 

the confidence level 1−α  is given, where Z is a standard normal random variable.  

 

Fitting of NMD-derived NBD model against alternative models onto regional species distribution 

 Note that at the regional scale when the entire forest-plot area is studied without being further 

divided into sub-regions or subsamples, the NMD model is identical to NBD. To further 

demonstrate the suitability of the NMD-derived NBD model as the regional SAD to the three 
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forest plots data, we also considered three additional regional SAD models in this analysis. The 

three models include metacommunity-level neutral zero-sum model (meta-NZSM), Poisson 

compound-lognormal model (PL) and Poisson compound-continuous logseries model (PCLS). 

 The expected number of species in the meta-NZSM model (Hubbell 2001, Alonso and 

McKane 2004) is formulated by  

E( Sr θ )=
θ
r

Γ(J +1)
Γ(J +1− n)

Γ(J +θ − r)
Γ(J +θ)

,      (S3) 

where θ  is a positive parameter and J is the total number of individuals in the entire community. 

Thus, the relative abundance for species with r individuals, denoted by p(r) , can be derived 

from normalizing the formula in Eq. S3. 

 PL (Dornelas and Connolly 2008, Connolly et al. 2009) is derived from  

p( r )= P( X = r | n )φ(n)dn
0

∞

∫ ,       (S4) 

where P( X = r | n )  is the conditional probability mass function (pmf) of a Poisson random 

variate with intensity n , and φ(n)  is the probability density function (pdf) of a lognormal 

distribution having the form of 

φ(n) = 1
nσ 2π

exp −
lnn−µ( )

2

2σ 2
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where µ  and σ  are the mean and standard deviation of log-abundance, respectively. 

 In analogy to the derivation of the model PL, the relative abundance of species with r 

individuals in the model PCLS can be derived from Eq. S4 but the lognormal distribution in Eq. 

S5 is replaced by a continuous logseries distribution whose pdf is expressed by  

φ(n) = θ
n

nρ
,         (S6) 

where 0 <θ <1 , 1≤ n <∞  and ρ  is a normalization constant with a form of 
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ρ =
e−n

n−lnθ

∞

∫ dn  (Table 1 of Green and Plotkin (2007)). Since numerically computing the 

relative abundance directly from the integration in Eq. S4 could lead to an inaccurate result, 

especially for larger r, the tractable formula of p(r) can be further expressed as  

p(r) = nr−1e−n

Γ(r)
×
θ n

φr
dn

0

∞

∫ −
nr−1e−n

Γ(r)
×
θ n

ρr
dn

0

1
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=
1

ρr 1− lnθ( )r
−

nr−1e−n

Γ(r)
×
θ n

ρr
dn

0

1
∫

,     (S7) 

for a positive integer r. Note that the relative abundance of unseen species can be numerically 

computed by 

p(0) = e−n θ
n

ρn
dn

1

∞

∫ .        (S8) 

 Finally, as a comparison, we also fit a local neutral model (local-NZSM) in which 

immigration is allowed. The computation of the local-NZSM model is given by (Volkov et al. 

2003, 2007, Chisholm and Pacala 2010), 

φn =θ
J!

n!(J − n)!
Γ(γ )

Γ(J +γ )
Γ(n+ y)
Γ(1+ y)

Γ(J − n+γ − y)
Γ(γ − y)

exp(− yθ / γ ) 
0

γ

∫ dy ,  	

where φn  represents the expected number of species with abundance n in the local community, 

γ =m(J −1) / (1−m) , J is the community size of the local community, θ  is the fundamental 

biodiversity number and m represents the immigration rate. Note that here we use this 

local-NZSM model as a reference only because it is, strictly speaking, a local sampling model and 

does not contain the aggregation or shape parameter like the other local models presented in Green 

and Plotkin (2007).  

To conduct model comparison and demonstrate the applicability of NMD model in the three 

forest plots, we utilize Akaike Information Criterion (AIC) (Akaike 1974), which is computed as, 
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2p-2log(MLKH), among three models, where p is the number of parameters in the model and 

MLKH represents the maximum of the likelihood function calculated above for each probabilistic 

model. Additionally, we also conducted Kolmogorov-Smirnov (KS) and Chi-squared ( 2χ ) tests 

(Table S2). In particular, the KS test has to be adjusted because species abundance is a discrete 

variable. Finally, we also plotted the fitted curves for the four regional SAD models along with the 

local-NZSM model as a reference and compared each fitted curve to the observed species 

abundance patterns visually (Fig. 5 of the main text).  

 

Fitting of NMD against alternative models onto local species distribution 

 For fitting the proposed NMD model with other alternative models and comparing their 

performance at different local scales, we use two methods, entire-plot-partitioning and 

intact-subregion-sampling, to collect local multi-species abundances. To be specific, the 

entire-plot-partitioning sampling scenario is to partition the entire forest plot into small quadrats 

with a given sampling unit (e.g., 2 × 2 m). Species abundance at each quadrat is used for 

constructing likelihood models for the fitting of the parametric models. By contrast, the intact 

-subregion sampling scenario is to randomly select an intact (or continuous) subregion from the 

entire forest plot and the limited local-subregion species abundance information is studied. To this 

end, the difference between these two local sampling scenarios is that the entire-plot-partitioning 

method will utilize all abundance information from all species found within the study plot.  

For the entire-plot-partitioning sampling scenario, each forest plot with a total area size A 

(e.g., 1000×500 m in the BCI plot) is divided into q non-overlapping and equal-sized quadrats 

based on a given sampling quadrat size (i.e., a = 2× 2 m, 5× 5 m and 10× 10 m). Therefore, each 
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quadrat has an area size of a (=A/q). Species abundance information distributed among quadrats 

are counted and used for constructing corresponding likelihood formulas for the NMD, 

independent Poisson (Chen and Shen 2017b) and independent NBD models, which were 

respectively given by 
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, (S9) 

where λ  denotes the mean intensity across species in the independent Poisson distribution. Note 

that, as mentioned above, our sampling quadrats have the same area size, i.e., ai = a  

( i =1,2,...,q ). 

 In the intact-subregion-sampling scenario, for a given specific fraction of sampling area (e.g., 

g = 0.2 in the BCI plot indicated that each intact subregion had an area size of 50 ha× g=10 ha), 

we randomly sampled 200 intact subregions (these subregions may overlap spatially or not) from 

the entire forest plot. In this study, we considered four area fractions of local subregions as g = 0.2, 

0.4, 0.6 and 0.8. 

The alternative local aggregation models fitted here for the specie abundance data collected 

from a subregion are derived from the compound versions of three regional SAD models—the 

continuous logseries (Eq. S6), gamma (will be shown below) and lognormal (Eq. S5) models. 

Note that the exponential model is a special case of gamma model when the shape parameter of 
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the gamma model is set to 1. These local models were discussed in Green and Plotkin (2007) and 

expressed by the compound of the corresponding parental regional SAD model and a NBD with 

the parameters related to the sampling fraction (denoted by g here) of the targeted subregion (thus 

they are called “local aggregation models”). Calculation formulas for these locally aggregated 

models were presented in Table 2 of Green and Plotkin’s paper and can be simply expressed as 

follows: 

φg y( ) = Γ(y + k)
Γ(y +1)Γ(k)0
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∫ gn
k + gn
⎛

⎝
⎜

⎞

⎠
⎟

y
k

k + gn
⎛

⎝
⎜

⎞

⎠
⎟

k

φ n( )dn ,   (S10) 

where y is the number of individuals observed in the local sample with sampling fraction g in 

contrast with the entire study region, k is the aggregation parameter, and φ(n)  is any of regional 

SADs including the continuous logseries model in Eq. S6, the lognormal model in Eq. S5 and a 

gamma/exponential model with the pdf as 

φ(n) = λ
βnβ−1e−λn

Γ(β)
,       (S11) 

where β  and 1
λ

 are the shape and the scale parameters, respectively. Therefore, after 

applying Eq. S10, the corresponding local aggregation models can have specific names given as 

NBD compound-continuous logseries model, NBD compound-lognormal model and NBD 

compound-gamma/exponential model.  

 The parameters of each of local aggregation models enumerated above were estimated by the 

conditional likelihood function that is similar to Eq. 8b in the main text and is expressed as 

follows: 

L(θ | f1,..., fM ) =
Γ f jj=1

M
∑ +1( )
Γ f j +1( )j=1
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where θ  is a vector of unknown parameters involved in the local aggregation model from Eq. 

S10. Note that for the intact-subregion-sampling scenario studied here, the above likelihood model 

(Eq. S12) implied that the proposed NMD model becomes identical to NBD again (like the 

situation at the regional scale, and Eq. S12 becomes identical to Eq. 8b in the main text). 

Because we randomly took 200 subregions for a given area fraction, we thus had 200 fitted 

models and 200 AIC values accordingly for each model. To visually demonstrate the fitting results, 

we used the box-and-whisker plot to present and compare the distribution of the ACI values for 

the alternative fitted models against our NMD model (Fig. S2). Note that the likelihood function 

in Eq. S12 was applied and the AIC value was calculated for each fitted model regarding each 

randomly selected subregion.  

 
 
References 

Akaike, H. 1974. Information theory as an extension of the maximum likelihood principle. Pages 
276–281 in B. Petrov and F. Csaki, editors. Second international symposium on information 
theory. Akademiai Kiado, Budapest. 
Alonso, D., and A. McKane. 2004. Sampling Hubbell’s neutral theory of biodiversity. Ecology 
letters 7:901–910. 
Chao, A., and T. Shen. 2003. Nonparametric estimation of Shannon’s index of diversity when 
there are unseen species in sample. Environmental and Ecological Statistics 10:429–443. 
Chen, Y. 2014. Species abundance distribution pattern of microarthropod communities in SW 
Canada. Pakistan Journal of Zoology 46:1023–1028. 
Chen, Y. 2015. Biodiversity and biogeographic patterns in Asia-Pacific Region I: statistical 
methods and case studies. Bentham Science Publishers. 
Chen, Y., and T. Shen. 2017a. A general framework for predicting delayed responses of ecological 
communities to habitat loss. Scientific Reports:In press. 
Chen, Y., and T. Shen. 2017b. Rarefaction and extrapolation of species richness using an 
area-based Fisher’s logseries. Ecology and Evolution 7:10066–10078. 
Chisholm, R., and S. Pacala. 2010. Niche and neutral models predict asymptotically equivalent 
species abundance distributions in high-diversity ecological communities. PNAS 36:15821–
15825. 
Conlisk, E., J. Conlisk, and J. Harte. 2007. The impossibility of estimating a negaive binomial 
clustering parameter from presence-absence data: a comment on He and Gaston. American 
Naturalist 170:651–654. 



14	
	

Connolly, S., M. Dornelas, D. Bellwood, and T. Hughes. 2009. Testing species abundance models: 
a new bootstrap approach applied to Indo-Pacific coral reefs. Ecology 90:3138–3149. 
Dornelas, M., and S. R. Connolly. 2008. Multiple modes in a coral species abundance distribution. 
Ecology Letters 11:1008–1016. 
Fisher, R., A. Corbet, and C. Williams. 1943. The relation between the number of species and the 
number of individuals in a random sample of an animal population. Journal of Animal Ecology 
12:42–58. 
Giam, X., T. Ng, V. Yap, and H. Tan. 2010. The extent of undiscovered species in Southeast Asia. 
Biodiversity and Conservation 19:943–954. 
Green, J., and A. Ostling. 2003. Endemics-area relationships: the influence of species dominance 
and spatial aggregation. Ecology 84:3090–3097. 
Green, J., and J. Plotkin. 2007. A statistical theory for sampling species abundance. Ecology 
Letters 10:1037–1045. 
He, F., and K. Gaston. 2000a. Estimating species abundance form occurrence. American 
Naturalist 156:553–559. 
He, F., and K. Gaston. 2000b. Occupancy-abundance relationships and sampling scale. Ecography 
23:503–511. 
He, F., and K. Gaston. 2003. Occupancy, spatial variance, and the abundance of species. 
American Naturalist 162:366–375. 
He, F., and S. Hubbell. 2011. Species–area relationships always overestimate extinction rates from 
habitat loss. Nature 473:368–371. 
He, F., and P. Legendre. 2002. Species diversity patterns derived from species-area models. 
Ecology 83:1185–1198. 
Holt, A., K. Gaston, and F. He. 2002. Occupancy-abundance relationships and spatial distribution: 
a review. Basic and Applied Ecology 3:1–13. 
Hubbell, S. P. 2001. The Unified Neutral Theory of Biodiversity and Biogeography (MPB-32) 
(Monographs in Population Biology). Princeton University Press. 
Johnson, N., and S. Kotz. 1969. Discrete distributions. Houghton Mifflin, Boston. 
Kitzes, J., and J. Harte. 2014. Beyond the species-area relationship: improving macroecological 
extinction estimates. Methods in Ecology and Evolution 5:1–8. 
Kitzes, J., and J. Harte. 2015. Predicting extinction debt from community patterns. Ecology 
96:2127–2136. 
Motomura, I. 1932. On the statistical treatment of communities. Zoological Magazine (Tokyo) 
44:379–383. 
Peuyo, S., F. He, and T. Zillio. 2007. The maximum entropy formalism and the idiosyncratic 
theory of biodiversity. Ecology Letters 10:1017–1028. 
Plotkin, J. B., M. D. Potts, N. Leslie, N. Manokaran, J. Lafrankie, and P. S. Ashton. 2000. 
Species-area curves, spatial aggregation, and habitat specialization in tropical forests. Journal of 
theoretical biology 207:81–99. 
Preston, F. 1962. The canonical distribution of commonness and rarity: part I. Ecology 43:185–
215. 
Ricklefs, R., and F. He. 2016. Region effects influence local tree species diversity. 
PNAS:doi:10.1073/pnas.1523683113. 
Shen, T., and F. He. 2008. An incidence-based richness estimator for quadrats sampled without 



15	
	

replacement. Ecology 87:2052–2060. 
Taylor, L. 1961. Aggregation, variance and mean. Nature 189:732–735. 
Taylor, L., I. Woiwod, and J. Perry. 1979. The negative binomial as a dynamic ecological model 
for aggregation, and the density dependence of k. Journal of Animal Ecology 48:289–304. 
Volkov, I., J. Banavar, S. Hubbell, and A. Maritan. 2003. A neutral theory and relative species 
abundance in ecology. Nature 424:1035–1037. 
Volkov, I., J. Banavar, S. Hubbell, and A. Maritan. 2007. Patterns of relative species abundance in 
rainforests and coral reefs. Nature 450:45–49. 
Wilber, M., J. Kitzes, and J. Harte. 2015. Scale collapse and the emergence of the power law 
species-area relationship. Global Ecology and Biogeography:DOI: 10.1111/geb.12309. 
Xu, W., G. Chen, C. Liu, and K. Ma. 2015. Latitudinal differences in species abundance 
distributions, rather than species aggregation, explain beta-diversity along latitudinal gradients. 
Global Ecology and Biogeography:DOI: 10.1111/geb.12331. 
Zillio, T., and F. He. 2010. Modeling spatial aggregation of finite populations. Ecology 91:3698–
3706. 
 
 
 
 
 
 



16	
	

Additional Figures and Tables 
Fig. S1. Boxplots are displayed to show the distribution of the numbers of unsampled species in 
the 2000 random replicates selected from each of the three forest plots, where five summary 

statistics including the minimum (min), the first, second, third quartiles Q1 ,Q2 ,Q3( ) , and the 

maximum (max) are given for reference. 
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Fig. S2. Fitting of the NMD model (annotated by A: n) and other alternative locally aggregated 

models from Green and Plotkin (2007)’s paper (B: l for the NBD compound-continuous logseries 

model, C: ▲ for the NBD compound-gamma/exponential model, and D: u for the NBD 

compound-lognormal model), to the local species abundance data that are collected from each of 

the 200 randomly selected subregions with a given area size in the three forest plots (a-BCI; 

b-HSD and c-Sherman). In each of the subplot, the left panel showed the relationship between the 

estimated k values and the AIC values respectively by horizontal and vertical error bars (mean±

standard error), while the right panel compared boxplots of the AIC distributions for SAD models. 

Additionally, each table superimposed on the right panel provides detailed information about two 

location parameters (Avg for the average; Med for the median) calculated from 200 estimated k 

values and 200 AIC values for each scenario. g represents the fraction of area size of a selected 

intact subregion with respect to the area size of the entire region. For example, g = 0.2 in the BCI 

plot indicated that each sampled subregion had an area size of 50 ha× g=10 ha. Note that the 

Sherman plot has a L-shape geometry and comprises a square plot of 140× 140 m and a rectangle 

plot of 100× 400 m; thus it is unable to consistently use the same sampling scheme as in the BCI 

and HSD plots which are of the same shape of 1000× 500 m. Instead, each of 200 subregions in 

the Sherman plot was composed of small quadrats randomly selected from the plot, where the 

number of selected quadrats is determined by the sampling fraction g. 
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Table S1. A review of ecological literature applying the independent negative binomial 
model to study species aggregation pattern. 

Study topic References 

1. Abundance estimation from occupancy maps; species 
occupancy-abundance relationship 

(He and Gaston 2000a, 2000b, 
2003, Holt et al. 2002, Conlisk 
et al. 2007, Zillio and He 2010) 

2. Maximum entropy theory of ecology (Peuyo et al. 2007, Wilber et al. 
2015) 

3. Species area relationship or endemic species area 
relationship 

(Plotkin et al. 2000, He and 
Legendre 2002, Green and 
Ostling 2003) 

4. Species richness estimate and species discovery (Giam et al. 2010, Ricklefs and 
He 2016) 

5. Species extinction risk or extinction debt estimation (He and Hubbell 2011, Kitzes 
and Harte 2014, 2015, Chen and 
Shen 2017a) 

6. Beta diversity or between-site species similarity (Xu et al. 2015, Chen and Shen 
2017a) 

7. Population fluctuation: Taylor’s power law (Taylor 1961, Taylor et al. 
1979) 
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Table S2. A comparison of fitting different regional SAD models to tree abundances of different 
forest plots. Non-significant high p-value in KS or χ 2  tests indicates the fitting of the model 
onto empirical abundance data is better. By contrast, a lower AIC value indicates the fitted model 
is better. 

Forest 
plot 

SAD 
parameters 
estimation 

KS test χ 2  test 
AIC 

Statistics p-value Statistics p-value 

BCI 
 NBD 

k̂ ,û( ) = 0.100 ,391.6( ) 	
0.06 0.60 53.5 0.31 1,393.6 

 meta-NZSM  
θ̂ = 33.9  

0.12 0.03 64.8 0.08 1,406.4 

 PL 
(µ̂,σ̂ ) = (59.9, 2.5)  

0.13 0.02 55.06 0.26 1,386.4 

 PCLS 
θ̂ = 0.9999  

0.06 0.57 55.4 0.25 1,403.9 

HSD 
 NBD 

( k̂, û) = (0.213, 940.7)  
0.09 0.41 45.4 0.60 1,492.5 

 meta-NZSM  
θ̂ = 25.6  

0.10 0.29 58.7 0.18 1,537.9 

 PL 
(µ̂,σ̂ ) = (149.1, 2.6)  

0.20 0.003 58.1 0.18 1,536.3 

 PCLS 
θ̂ = 0.9999  

0.09 0.38 54.3 0.29 1,527.7 

SHERMAN 
 NBD 

( k̂, û) = (0.114, 50.1)  
0.05 0.70 42.9 0.69 648.5 

 meta-NZSM  
θ̂ = 35.4  

0.07 0.32 51.8 0.36 653.7 

 PL 
(µ̂,σ̂ ) = (13.4, 2.3)  

0.11 0.04 51.4 0.38 674.3 

 PCLS 
θ̂ = 0.9981  

0.11 0.03 58.0 0.19 661.4 


